Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsc Microanal ; 29(Supplement_1): 298-299, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37613532
2.
Struct Dyn ; 6(5): 054303, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31559318

RESUMO

We present kilohertz-scale video capture rates in a transmission electron microscope, using a camera normally limited to hertz-scale acquisition. An electrostatic deflector rasters a discrete array of images over a large camera, decoupling the acquisition time per subframe from the camera readout time. Total-variation regularization allows features in overlapping subframes to be correctly placed in each frame. Moreover, the system can be operated in a compressive-sensing video mode, whereby the deflections are performed in a known pseudorandom sequence. Compressive sensing in effect performs data compression before the readout, such that the video resulting from the reconstruction can have substantially more total pixels than that were read from the camera. This allows, for example, 100 frames of video to be encoded and reconstructed using only 15 captured subframes in a single camera exposure. We demonstrate experimental tests including laser-driven melting/dewetting, sintering, and grain coarsening of nanostructured gold, with reconstructed video rates up to 10 kHz. The results exemplify the power of the technique by showing that it can be used to study the fundamentally different temporal behavior for the three different physical processes. Both sintering and coarsening exhibited self-limiting behavior, whereby the process essentially stopped even while the heating laser continued to strike the material. We attribute this to changes in laser absorption and to processes inherent to thin-film coarsening. In contrast, the dewetting proceeded at a relatively uniform rate after an initial incubation time consistent with the establishment of a steady-state temperature profile.

3.
Ultramicroscopy ; 171: 8-18, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27584052

RESUMO

High temporal resolution transmission electron microscopy techniques have shown significant progress in recent years. Using photoelectron pulses induced by ultrashort laser pulses on the cathode, these methods can probe ultrafast materials processes and have revealed numerous dynamic phenomena at the nanoscale. Most recently, the technique has been implemented in standard thermionic electron microscopes that provide a flexible platform for studying material's dynamics over a wide range of spatial and temporal scales. In this study, the electron pulses in such an ultrafast transmission electron microscope are characterized in detail. The microscope is based on a thermionic gun with a Wehnelt electrode and is operated in a stroboscopic photoelectron mode. It is shown that the Wehnelt bias has a decisive influence on the temporal and energy spread of the picosecond electron pulses. Depending on the shape of the cathode and the cathode-Wehnelt distance, different emission patterns with different pulse parameters are obtained. The energy spread of the pulses is determined by space charge and Boersch effects, given by the number of electrons in a pulse. However, filtering effects due to the chromatic aberrations of the Wehnelt electrode allow the extraction of pulses with narrow energy spreads. The temporal spread is governed by electron trajectories of different length and in different electrostatic potentials. High temporal resolution is obtained by excluding shank emission from the cathode and aberration-induced halos in the emission pattern. By varying the cathode-Wehnelt gap, the Wehnelt bias, and the number of photoelectrons in a pulse, tradeoffs between energy and temporal resolution as well as beam intensity can be made as needed for experiments. Based on the characterization of the electron pulses, the optimal conditions for the operation of ultrafast TEMs with thermionic gun assembly are elaborated.

4.
Microsc Microanal ; 15(4): 272-81, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19575828

RESUMO

Extrapolating from a brief survey of the literature, we outline a vision for the future development of time-resolved electron probe instruments that could offer levels of performance and flexibility that push the limits of physical possibility. This includes a discussion of the electron beam parameters (brightness and emittance) that limit performance, the identification of a dimensionless invariant figure of merit for pulsed electron guns (the number of electrons per lateral coherence area, per pulse), and calculations of how this figure of merit determines the trade-off of spatial against temporal resolution for different imaging modes. Modern photonics' ability to control its fundamental particles at the quantum level, while enjoying extreme flexibility and a very large variety of operating modes, is held up as an example and a goal. We argue that this goal may be approached by combining ideas already in the literature, suggesting the need for large-scale collaborative development of next-generation time-resolved instruments.


Assuntos
Microscopia Eletrônica/métodos , Microscopia Eletrônica/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...